
1 / 31

EFT POS - WebECR
Version 2.5.11 - Published 04/03/2025

1. Overview
The webECR service is a device concentrator service that provides a way for 3rd party services to initiate
transactions with and receive results from managed EFT-POS devices. All device management and
communications are handled by webECR, thus negating the need for manual device management.

2. Workflows

2.1. API workflows:
The webECR service has 2 main workflows:

2.1.1. Polling workflow

When initiating a transaction, the call is handled synchronously and the caller has the ability to wait for the
transaction to complete. If after the maximum wait time, the request has not completed yet, the caller has the
ability to call the results endpoint in regular intervals to check the transaction status.

2 / 31

2.1.2. Webhook callback workflow

When initiating a transaction, the call is acknowledged instantly. The caller provides a callback URL (webhook)
that will be called by the WebECR backend when the transaction intent changes status.

The callback URL is configured once at the account initiation process and no need to provide a callback URL
on each request is required.

3 / 31

2.2 Authentication workflows

WebECR allows for two workflows on how a client software is authenticated and on what EFT-POS devices it is
allowed to initiate transasctions.

2.2.1 Direct permissions workflow

4 / 31

In this workflow, the client software is directly controlled by the merchant. Thus, a merchant account is created
in the WebECR server and the merchant's EFT-POS devices are directly assigned to this account.

In order to achieve this authentication, a bearer token is required, as described in chapter 3.6.1

2.2.2 3rd party servicer permissions workflow

In this workflow, the client software is not controlled by the merchant but by a 3rd party servicer (ex. SaaS
invoicing solution provider). Thus the client software manages multiple merchants and has the capability to
start transactions on behalf of them.

In this workflow, the client software is assigned with a client account which has no direct EFT-POS device
assignments. Each EFT-POS device provides the capability for a merchant to grant or revoke permissions
towards the 3rd party servicer to start transactions from the device menu.

In order to achieve this authentication, a bearer token is required (chapter 3.6.1) as well as an API key as
described in chapter 3.2

3. API
All API calls are REST based and accept/respond with valid JSON. For all endpoints, both the WebECR service
as well as the client have the ability to send additional fields not included in this document to allow for
flexiblity in customisations.

It is therefore mandatory for all API implementations to:

Ignore any fields in requests or responses that they do not recognise
Not implement any mandatory fields not included in this document

The following calls are applicable to the webECR service:

3.1. Authentication

All calls require authentication & authorization. This is achieved through JWT bearer token authentication
(access/refresh). The access token shall be used on all subsequent calls in the "Authorization" header as
follows:

Authorization: Bearer <JWT access token>

The refresh token can be used to renew the access token without the usage of a username/password
combination.

3.2. Authentication on behalf of user

In case the client software has acquired additional merchant permissions (3rd party servicer permissions
workflow), these permissions are granted with the usage of an Api key. The API key needs to be included in
the "X-Api-Key" header on all calls.

Example:

5 / 31

Authorization: Bearer <JWT access token>
X-Api-Key: <API key>

In order for the client software to retrieve the X-Api-Key, the following workflow is to be followed:

1. The user turns on the EFT-POS or opens the softPOS application on their phone
2. The user navigates to the relevant POS menu option named "Link with 3rd party services"
3. The EFT-POS shows an authentication code. The user enters it in the client software.
4. The client software exchanges (redeems) the authentication code with the API key, using the

authentication code redeem API call as described below
5. The client software saves the API key and uses it for the rest of the integration lifetime

The client software can save/cache the API key and use it to start transactions at any point in time. The
merchant has the ability to revoke the access permissions at any time, so the Api key may become invalid. In
this case, the client software should handle this as an error condition.

3.3. ECR Token based data validation

In case the client software is using a local device for signature generation (ΦΗΜΑΣ) instead of an electronic
invoicing provider, an alternative workflow needs to be used in order to adapt to the capabilities and mode of
operation of these devices.

1. The calling software needs to call the terminal bind endpoint (section 3.7.11) in order for the POS to be
registered as connected to the ECR device. This needs to be called at least once.

2. The calling software needs to call the terminal key exchange (section 3.7.12) in order to exchange
session keys with the ECR device. This needs to be called at least once, and is strongly recommended to
be called periodically after a predefined number of transactions.

3. The calling sofware is able to start transactions normally, using the start new transaction intent
endpoint and filling the EcrTokenData data structure.

This workflow is also described in the document "A1155 - ERP to EFTPOS protocol proposal" which is the
socket based protocol variant.

3.4. Pagination

Some calls that typically return multiple results are paginated. The pagination scheme is common for all
paginated responses and is as follows:

parameter type required comment

count integer yes the total results count

next string no url that should be called to retrieve the next page

previous string no url that should be called to retrieve the previous page

results list yes the list that contains the actual results

Example paginated response

6 / 31

{
 "count": 10816,
 "next": "https://uat.mreceipts.com/api/.../?limit=100&offset=100",
 "previous": null,
 "results": [
 {
 ...
 },
 {
 ...
 },
 {
 ...
 }
]
}

3.5. Filtering

The calls that return multiple results support filtering of results. The filtering works as GET query parameters as
in the following format:

Example GET filtering which searches for an terminal entity with TerminalID = 01234567 AND Acquirer = 11

GET https://[baseURL]/?TerminalID=01234567&Acquirer=11

3.6. Error handling

WebECR responds with these standard HTTP response codes in case of error:

200: Indicates a successful execution of the request.
400: Indicates that the request was invalid. Where applicable, the respose contains details of the error
401: Indicates that the caller has not authenticated successfully
403: Indicates that the caller has authenticated successfully but has insufficient permissions to access
the specific endpoint or call.
404: Indicates that an API call endpoint is invalid. In case the endpoint contains an entity id, this entity
does not exist or is inaccessible to the caller.
500: Indicates that there was a server error

3.7. API

3.7.1 Get access token

Request type: POST
Request URL: [base url]/token/

Request parameters:

7 / 31

parameter type required commentparameter type required comment

username string yes

password string yes

Response parameters:

parameter type required comment

access string yes The access token in JWT form

refresh string yes The refresh token in JWT form

Example request:

{
 "username" : "test_username",
 "password" : "test_password"
}

Example response:

{
 "refresh":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoicmVmcmVzaCIsImV4cCI6MTY3
OTA2MTQwMSwianRpIjoiOWNkZDE4YWQwZjllNGE4OGIxOWE4ZGRkNzRkYmYyODAiLCJ1c2VyX2lkIjoxfQ
.B7HJ0c5EAJ_E4T0jauSDADQTNIoa6jbXRRuMC9tsit0",
 "access":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiwiZXhwIjoxNjc2
NDk4MjAxLCJqdGkiOiI3NmUyNjliYzZkN2Y0NWRhODgwZDIwNTQwYWQwNTBkMyIsInVzZXJfaWQiOjF9.S
bEq_oLk8Jwxq2Mg4v1NyVFW3gT1jdbDqrbnoQ47Q3c"
}

3.7.2 Refresh access token

Request type: POST
Request URL: [base url]/token/refresh/

Request parameters:

parameter type required comment

refresh string yes The previously acquired refresh token

Response parameters:

parameter type required comment

8 / 31

parameter type required comment

access string yes The access token in JWT form

Example request:

{
 "refresh" :
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoicmVmcmVzaCIsImV4cCI6MTY3
OTA2MTQwMSwianRpIjoiOWNkZDE4YWQwZjllNGE4OGIxOWE4ZGRkNzRkYmYyODAiLCJ1c2VyX2lkIjoxfQ
.B7HJ0c5EAJ_E4T0jauSDADQTNIoa6jbXRRuMC9tsit0"
}

Example response:

{
 "access":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiwiZXhwIjoxNjc2
NDk4MjAxLCJqdGkiOiI3NmUyNjliYzZkN2Y0NWRhODgwZDIwNTQwYWQwNTBkMyIsInVzZXJfaWQiOjF9.S
bEq_oLk8Jwxq2Mg4v1NyVFW3gT1jdbDqrbnoQ47Q3c"
}

3.7.3 Redeem authentication code

The endpoint is used to redeem an authentication code that is presented by a POS in order to receive an API
Key. The implementation of this endpoint is required only when implementing the 3rd party servicer
permissions workflow as described in sections 2.2.2 and 3.2.

Request type: POST
Request URL: [base url]/authorization/redeem/

Request parameters:

parameter type required comment

Type string yes The type of authorization code. Always set to "webecr"

Code string yes The authorization code as shown by the POS and entered by the user

Response parameters:

parameter type required comment

Type string yes The type of authorization code. Always set to "webecr"

Id string yes
the API key that should be used for all subsequent API calls for this
user

Example request:

9 / 31

{
 "Type" : "webecr",
 "Code" : "8413239096"
}

Example response:

{
 "Id": "Zg6xxfx_R1eXTOs39BPzqQ",
 "Type": "webecr"
}

3.7.4 Terminals list

The endpoint is used to retrieve a list of all the terminals that are available to the user. It can be used as a first
step to search for a specific terminal by its name, merchant or type and retrieve its id for further processing

Request type: GET
Request URL: [base url]/terminal/

Response parameters:

parameter type required comment

id string yes The unique identifier of the terminal for the POS backend

TerminalID string yes The terminal identifier

Merchant string yes Reference to the unique identifier of the merchant of the POS

Acquirer string yes Reference to the unique identifier of the acquirer of the POS

Filter parameters:

parameter comment

TerminalID

Merchant

Acquirer

Example response

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [

10 / 31

 {
 "id": "358046",
 "TerminalID": "64999964",
 "Merchant": "11719",
 "Acquirer": "11"
 }
]
}

3.7.5 Start new transaction intent

The endpoint is used to start a new transaction by creating an intent.

Request type: POST
Request URL: [base url]/terminal/{id}/txninit/

Request parameters:

parameter type required comment

TxnType integer yes
The transaction type. See transaction type table below
for possible values

Amount integer yes
The payable transaction amount in integer form. Ex.
1.00 eur is 100

TipAmount integer no The tip amount in integer form. Ex. 1.00 eur is 100

CashbackAmount integer no
The cashback amount in integer form. Ex. 1.00 eur is
100

CurrencyCode integer yes The ISO 4217 numerical currency code . 978 for EUR

Instalments integer no The number of instalments

IsTaxFree boolean no Is the transaction eligible to tax-free regulation

PreloadTransaction boolean no
The transaction should be preloaded to the POS
device for asynchronous execution. Used for cases
such as restaurants, deliveries, coffee shops etc.

PreloadExpiration integer no
The expiration of a transaction that is preloaded to a
POS, in minutes. The field is mandatory if
PreloadTransaction is true

OnBehalfCollection boolean no
The payee collects the transaction funds on behalf of
another entity, ex. courier payment on delivery, food
delivery platforms

CustomerReference string yes
A caller defined reference which can be used to
reference the intent and eventually the transaction.
Maximum length of 50 characters

11 / 31

parameter type required comment

CustomerEmail string no
If provided and supported by the acquirer, a
transaction receipt will be sent to this email address

CustomerPhone string no
If provided and supported by the acquirer, a
transaction receipt will be sent to this phone

InitialTransaction string no
Can be optionally used at refund transactions and it
should include the Id field of the original transaction

ProviderData ProviderData no
A data object representing the relevant data required
by Greek law to accompany a provider signature based
transaction request.

EcrTokenData EcrTokenData no
A data object representing the relevant data required
by Greek law to accompany an ECR token MAC based
transaction request.

Timeout integer no

If timeout is 0 or not present, the transaction will be
initiated asynchronously. If present, the service will
wait up to "Timeout" seconds before returning to the
caller. Max timeout is 180s

Response parameters:

parameter type required comment

Id string yes The unique identifier of the intent for the POS backend

Status integer yes The intent status. See below for values

Result integer yes The intent result. See below for values

TxnType integer yes
The transaction type. See transaction type table below
for possible values

Amount integer yes
The payable transaction amount in integer form. Ex. 1.00
eur is 100

TipAmount integer yes The tip amount in integer form. Ex. 1.00 eur is 100

CurrencyCode integer yes The ISO 4217 numerical currency code. 978 for EUR

Instalments integer no The number of instalments

CustomerReference string yes
The caller defined reference which can be used to
reference the intent and eventually the transaction.
Maximum length of 50 characters

Terminal string yes Reference to the terminal which this intent was sent to

CustomerEmail string no Email that a receipt was/is going to be sent

CustomerPhone string no Phone that a receipt was/is going to be sent

12 / 31

parameter type required comment

Transaction transaction no
Contains the transaction result details as described in
section 3.7.9 - only applicable if result = APPROVED

InitialTransaction transaction no
Contains the Id field of the original transaction - only
applicable if TxnType is refund and the field was used
during the request

TransactionId string no

The unique transaction id required in the Greek market
as mandated and defined by law. Has non-null value in
case of an Approved transaction with ProviderData
validation at initial request.

ResultCommand string no

The RESULT command as sent by a compliant device
according to Greek law. Has non-null value in case of an
Approved transaction with EcrTokenData validation at
initial request.

Timestamp string yes
The transaction intent creation timestamp in iso-8601
format

Transaction type

The possible values for the transaction type are:

0: sale
1: refund
2: Pre-authorisation
3: Pre-authorisation completion
4: Mail order/Telephone order
5: Cash advance
6: Card payment
7: Bill payment
8: Other payment
9: Pre-payment

Transaction types from 0 to 49 are reserved for future use. Values over 50 are allowed to be used in custom
implementations.

Intent status

The possible values for the intent status are:

1: PENDING - Intent has been registered to the backend and is pending to be sent to the device
2: SENT - Intent has been sent to the device
3: COMPLETED - Intent has been successfully completed by the device and has registered the results

Intent result

13 / 31

The possible values for the intent result are:

1: APPROVED - The transaction has been completed and approved by the authorization system
2: DECLINED - The transaction has been completed and declined by the authorization system
3: CANCELLED - The transaction has been cancelled by the POS user before reaching completion
4: FAILED - The transaciton has failed to complete
5: UNKNOWN - The transaction result is unknown. Only possible if the device hasn't responded with
results
6: BUSY - The transaction has failed because the POS is currently unavailable for transactions (either
processing another transaction or under maintenance)
7: MAX_TRANSACTIONS - The POS device has reached its transaction limit for the specific batch. Batch
closing should be performed on the device before continuing transactions

Provider Data

The provider data is an object that contains the provider signature and the information needed to validate the
signature as defined by the relevant Greek law. It contains the following information

parameter type required comment

Uid string yes The UID of the invoice

Mark string no

SignatureTimestamp string yes
The generation timestamp of ProviderSignature in the same
format as in the signature itself, namely
YYYYMMDDhhmmss in Greece local time

NetAmount integer yes The price of goods without any VAT applied to it

VatAmount integer yes The amount of VAT that is applied to the net amount

TotalAmount integer yes The total amount of the transaction

ProviderId integer yes
The id of the electronic invoicing provider. It is required for
public key lookup.

Signature string yes
The electronic invoicing provider signature. Required when
a provider signature validation process is used.

The WebECR server uses the data from the following fields in order to perform the validation:

ProviderData.Uid
ProviderData.Mark
ProviderData.SignatureTimestamp
Amount
ProviderData.NetAmount
ProviderData.VatAmount
ProviderData.TotalAmount
TID (not included in request - field TerminalID of calling terminal as described at 3.7.4 Terminals list)

ECR Token Data

14 / 31

The ECR Token data is an object providing the same functionality as provider data and used in cases where
symmetric cryptography is to be used for transaction validation. It contains the following information

parameter type required comment

AmountCommand string yes
The AMOUNT command as received and signed by a compliant
device according to Greek law

In order to provide parity with socket based implementations, in the case of validation via ECR token a valid
AMOUNT command is expected, as defined in the document "A1155 - ERP to EFTPOS protocol proposal". The
command is checked for protocol level validity, for data correctness against the main data structure of the
/txninit endpoint, as well as for cryptographic validity.

In order for ECR token data transaction initiation to succeed, the caller must first complete the process as
described

Examples

Example request:

The following request is a simple request that does not include signature validation. For merchants &
transaction types that require validation, this request will fail with an HTTP 400.

{
 "TxnType" : 0,
 "Amount" : 100,
 "TipAmount" : 0,
 "CurrencyCode" : 978,
 "CustomerReference" : "b7775c92-0be9-4005-9450-e45769e593e2",
 "Timeout" : 180
}

Example response:

{
 "Id": "1060",
 "Status": 3,
 "Result": 1,
 "TxnType": 0,
 "Amount": 100,
 "TipAmount": 0,
 "CurrencyCode": 978,
 "Instalments": 0,
 "CustomerReference": "b7775c92-0be9-4005-9450-e45769e593e2",
 "Terminal": "358154",
 "CustomerEmail": null,
 "CustomerPhone": null,
 "Transaction": {
 "Id": "8091750",

15 / 31

 "TxnType": 0,
 "Timestamp": "2023-11-13T10:45:24Z",
 "VoidTimestamp": null,
 "CardPAN": "516732******6411",
 "Approved": true,
 "Voided": false,
 "STAN": 1,
 "BatchNumber": 1,
 "Acquirer": "75",
 "TID": "90000001",
 "MID": "9000000001",
 "Amount": 100,
 "TipAmount": 0,
 "CashbackAmount": 0,
 "LoyaltyRedemptionAmount": 0,
 "Instalments": 1,
 "RRN": "001003",
 "AuthCode": "104525",
 "OriginalRRN": null,
 "OriginalAuthCode": null,
 "CurrencyCode": 978,
 "CustomerReference": "b7775c92-0be9-4005-9450-e45769e593e2"
 },
 "InitialTransaction": null,
 "Timestamp": "2024-08-06T14:29:58.080481Ζ
}

Example request (Greek market with Provider Data validation):

{
 "TxnType" : 0,
 "Amount" : 100,
 "TipAmount" : 0,
 "CurrencyCode" : 978,
 "CustomerReference" : "b7775c92-0be9-4005-9450-e45769e593e2",
 "Timeout" : 180,
 "ProviderData" : {
 "Uid" : "D4F6A5F5C6123658F78369E5191ED5C9D73CB7AC",
 "Mark" : null,
 "SignatureTimestamp" : "20231114100000",
 "NetAmount" : 100,
 "VatAmount" : 24,
 "TotalAmount" 124,
 "ProviderId" : 12,
 "Signature" : "12345"
 }
}

Example response (Greek market with Provider Data validation):

16 / 31

{
 "Id": 1060,
 "Status": 3,
 "Result": 1,
 "TxnType": 0,
 "Amount": 100,
 "TipAmount": 0,
 "CurrencyCode": 978,
 "Instalments": 0,
 "CustomerReference": "b7775c92-0be9-4005-9450-e45769e593e2",
 "Terminal": "358154",
 "CustomerEmail": null,
 "CustomerPhone": null,
 "Transaction": {
 "Id": "8091750",
 "TxnType": 0,
 "Timestamp": "2023-11-13T10:45:24Z",
 "VoidTimestamp": null,
 "CardPAN": "516732******6411",
 "Approved": true,
 "Voided": false,
 "STAN": 1,
 "BatchNumber": 1,
 "Acquirer": "75",
 "TID": "90000001",
 "MID": "9000000001",
 "Amount": 100,
 "TipAmount": 0,
 "CashbackAmount": 0,
 "LoyaltyRedemptionAmount": 0,
 "Instalments": 1,
 "RRN": "121702285176",
 "AuthCode": "315144",
 "OriginalRRN": null,
 "OriginalAuthCode": null,
 "CurrencyCode": 978,
 "CustomerReference": "b7775c92-0be9-4005-9450-e45769e593e2"
 },
 "InitialTransaction": null
 "TransactionId" : "075;121702285176;315144",
 "ResultCommand" : null,
 "Timestamp": "2024-08-06T14:29:58.080481Ζ"
}

Example request (Greek market with Ecr token data validation):

{
 "TxnType" : 0,
 "Amount" : 100,
 "TipAmount" : 0,
 "CurrencyCode" : 978,

17 / 31

 "CustomerReference" : "b7775c92-0be9-4005-9450-e45769e593e2",
 "Timeout" : 180,
 "EcrTokenData" : {
 "AmountCommand" :
"ECR0110A/S000011/F100:978:2/RABC00111222/D20240412124019/M0/H0/T11/QD93EDE48"
 }
}

Example response (Greek market with Ecr token data validation):

{
 "Id": 1060,
 "Status": 3,
 "Result": 1,
 "TxnType": 0,
 "Amount": 100,
 "TipAmount": 0,
 "CurrencyCode": 978,
 "Instalments": 0,
 "CustomerReference": "b7775c92-0be9-4005-9450-e45769e593e2",
 "Terminal": "358154",
 "CustomerEmail": null,
 "CustomerPhone": null,
 "Transaction": {
 "Id": "8091750",
 "TxnType": 0,
 "Timestamp": "2023-11-13T10:45:24Z",
 "VoidTimestamp": null,
 "CardPAN": "516732******6411",
 "Approved": true,
 "Voided": false,
 "STAN": 1,
 "BatchNumber": 1,
 "Acquirer": "75",
 "TID": "90000001",
 "MID": "9000000001",
 "Amount": 100,
 "TipAmount": 0,
 "CashbackAmount": 0,
 "LoyaltyRedemptionAmount": 0,
 "Instalments": 1,
 "RRN": "121702285176",
 "AuthCode": "315144",
 "OriginalRRN": null,
 "OriginalAuthCode": null,
 "CurrencyCode": 978,
 "CustomerReference": "b7775c92-0be9-4005-9450-e45769e593e2"
 },
 "InitialTransaction": null
 "TransactionId" : null,
 "ResultCommand" :
"POS0110R/S000011/RABC00111222/T11/M0/C00/DVisa:00:516732******6411:100:100:0:0:0:

18 / 31

11:90000001:1:121702285176:1:315144:20240806172958:0",
 "Timestamp": "2024-08-06T14:29:58.080481Z"
}

3.7.6 Transaction Void Intent

The following endpoint is used to start a new intent to void a transaction. The caller needs to reference the
transaction that needs to be voided and has the ability to either reference it via the original transaction intent,
or the tranasction id. Both values can be obtained either by the response of the original successful intent, or
by querying the the intent or transaction endpoints.

When a transaction is voided, the original intent and the void intent are 2 separate entities, however the
transaction is object remains one and has a single transaction id.

Request type: POST
Request URL: [base url]/terminal/{id}/txnvoid/

Request parameters:

parameter type required comment

OriginalIdentifier string yes The identifier of the original intent

OriginalIdentifierType integer yes
The type of identifier contained in the OriginalIdentifier
field

CustomerEmail string no
If provided and supported by the acquirer, a transaction
receipt will be sent to this email address

CustomerPhone string no
If provided and supported by the acquirer, a transaction
receipt will be sent to this phone

Timeout integer no

If timeout is 0 or not present, the transaction will be
initiated asynchronously. If present, the service will wait up
to "Timeout" seconds before returning to the caller. Max
timeout is 180s

Response parameters:

parameter type required comment

id string yes The unique identifier of the intent for the POS backend

Status integer yes The intent status.

Result integer yes The intent result.

Terminal string yes Reference to the terminal which this intent was sent to

CustomerEmail string no Email that a receipt was/is going to be sent

CustomerPhone string no Phone that a receipt was/is going to be sent

19 / 31

parameter type required comment

Transaction transaction no
Contains the transaction result details as described in
section 3.7.9 - only applicable if result = APPROVED

InitialTransaction transaction no
Contains the Id field of the original transaction - only
applicable if TxnType is refund and the field was used
during the original refund request

Timestamp string yes
The transaction intent creation timestamp in iso-8601
format

OriginalIdentifierType

For quick reference of the original transaction, the API allows for multiple ways to identify the original
transaction, depending on the OriginalIdentifierType. Possible values:

1: INTENTID - The field contains the field "Id" of the original intent to be voided
2: TRANSACTIONID - The field contains the field "TransactionId" of the original intent to be voided.

Examples

Example request:

{
 "OriginalIdentifier": "075;121702285176;315144",
 "OriginalIdentifierType": 2,
 "Timeout": 180
}

Example response:

{
 "id": "1079",
 "Status": 3,
 "Result": 1,
 "Terminal": "90000001",
 "Transaction": {
 "Id": "8091811",
 "ExternalId": null,
 "TxnType": 0,
 "Timestamp": "2024-08-06T11:01:05Z",
 "VoidTimestamp": "2024-08-06T11:08:02Z",
 "CardPAN": "535142******2299",
 "CardHash": null,
 "Approved": true,
 "Voided": true,
 "STAN": 406,
 "BatchNumber": 23,

20 / 31

 "Batch": null,
 "Acquirer": "11",
 "TID": "90000001",
 "MID": "1",
 "Amount": 124,
 "DccAmount": null,
 "TipAmount": 0,
 "CashbackAmount": 0,
 "LoyaltyRedemptionAmount": 0,
 "Instalments": 0,
 "PosEntryMode": 0,
 "Cryptogram": null,
 "HostResponseCode": "0",
 "RRN": "240828140121",
 "AuthCode": "7B8670",
 "OriginalRRN": null,
 "OriginalAuthCode": null,
 "CurrencyCode": 978,
 "DccCurrencyCode": null,
 "CustomerReference": "331"
 },
 "InitialTransaction": null,
 "CustomerEmail": null,
 "CustomerPhone": null
}

3.7.7 Transaction intent list

The endpoint is used to list all transaction intents that have been created and accessible to the user. It should
be used if the "start transaction intent" call has timed out or was async in order to resolve the final status of a
specific intent

Request type: GET
Request URL: [base url]/transactionintent/

Response parameters:

parameter type required comment

id string yes The unique identifier of the intent for the POS backend

Status integer yes The intent status

Result integer yes The intent result

TxnType integer yes
The transaction type. See transaction type table for possible
values

Void boolean yes Is this a transaction intent or a transaction void intent?

Amount integer yes The transaction amount in integer form. Ex. 1.00 eur is 100

TipAmount intege yes The tip amount in integer form. Ex. 1.00 eur is 100

21 / 31

parameter type required comment

CurrencyCode integer yes The ISO 4217 numerical currency code. 978 for EUR

Instalments integer no The number of instalments

CustomerReference string yes
The caller defined reference which can be used to reference
the intent and eventually the transaction. Maximum length
of 50 characters

Terminal string yes Reference to the terminal which this intent was sent to

CustomerEmail string yes Email that a receipt was/is going to be sent

CustomerPhone string yes Phone that a receipt was/is going to be sent

Transaction string no
Reference to the transaction details of the completed
transaction - only applicable if result = APPROVED

InitialTransaction string no
Reference to the transaction details of the initial transaction
- only applicable if transaction type is refund or pre-auth
completion

TransactionId string no

The unique transaction id required in the Greek market as
mandated and defined by law. Has non-null value in case of
an Approved transaction with ProviderData validation at
initial request.

ResultCommand string no

The RESULT command as sent by a compliant device
according to Greek law. Has non-null value in case of an
Approved transaction with EcrTokenData validation at initial
request.

Timestamp string yes
The transaction intent creation timestamp in iso-8601
format

Filter parameters:

parameter comment

Status

Result

TxnType

Timestamp_min

Timestamp_max

Amount

Amount_min

Amount_max

22 / 31

parameter comment

TipAmount

TipAmount_min

TipAmount_max

Instalments

CustomerReference

Terminal

TID

Transaction

InitialTransaction

TransactionId

Response example

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 {
 "id": "1060",
 "Status": 3,
 "Result": 1,
 "TxnType": 0,
 "Amount": 1000,
 "TipAmount": 0,
 "CurrencyCode": 978,
 "Instalments": 0,
 "CustomerReference": "e95d0038-6e5f-4874-84fe-e102ee6b87ca",
 "Terminal": "14833",
 "CustomerEmail": null,
 "CustomerPhone": null,
 "Transaction": "8091750",
 "InitialTransaction": null,
 "TransactionId": "075;121702285176;315144",
 "Timestamp": "2024-08-06T14:29:58.080481Ζ"
 }
]
}

3.7.8 Transaction intent detail

23 / 31

The endpoint is used to retrieve details of the transaction intent referenced by given id. It should be used if
the "start transaction intent" call has timed out or was async in order to resolve the final status of a specific
intent

Request type: GET
Request URL: [base url]/transactionintent/{id}/

Response parameters:

parameter type required comment

id string yes The unique identifier of the intent for the POS backend

Status integer yes The intent status

Result integer yes The intent result

TxnType integer yes
The transaction type. See transaction type table for possible
values

Void boolean yes Is this a transaction intent or a transaction void intent?

Amount integer yes The transaction amount in integer form. Ex. 1.00 eur is 100

TipAmount intege yes The tip amount in integer form. Ex. 1.00 eur is 100

CurrencyCode integer yes The ISO 4217 numerical currency code. 978 for EUR

Instalments integer no The number of instalments

CustomerReference string yes
The caller defined reference which can be used to reference
the intent and eventually the transaction. Maximum length
of 50 characters

Terminal string yes Reference to the terminal which this intent was sent to

CustomerEmail string yes Email that a receipt was/is going to be sent

CustomerPhone string yes Phone that a receipt was/is going to be sent

Transaction string no
Reference to the transaction details of the completed
transaction - only applicable if result = APPROVED

InitialTransaction string no
Reference to the transaction details of the initial transaction
- only applicable if transaction type is refund or pre-auth
completion

TransactionId string no
The unique transaction id required in the Greek market as
mandated and defined by law.

Timestamp string yes
The transaction intent creation timestamp in iso-8601
format

Response example

24 / 31

{
 "id": "1060",
 "Status": 3,
 "Result": 1,
 "TxnType": 0,
 "Amount": 1000,
 "TipAmount": 0,
 "CurrencyCode": 978,
 "Instalments": 0,
 "CustomerReference": "e95d0038-6e5f-4874-84fe-e102ee6b87ca",
 "Terminal": "14833",
 "CustomerEmail": null,
 "CustomerPhone": null,
 "Transaction": "8091750",
 "InitialTransaction": null,
 "TransactionId": "075;121702285176;315144",
 "Timestamp": "2024-08-06T14:29:58.080481Z"
}

3.7.9. Transaction list

The endpoint is used to list all transactions that have been successfully performed and accessible to the user.
It is referenced by the "Transaction" and "InitialTransaction" fields of a transaction intent and can be used to
provide more details about the transaction.

Request type: GET
Request URL: [base url]/transaction/

Response parameters:

parameter type required comment

Id string yes
The unique identifier of the transaction for the POS
backend

TxnType integer yes
The transaction type. See transaction type table for
possible values

Timestamp string yes
The transaction completion timestamp in iso-8601
format

VoidTimestamp string no
The transaction void completion timestamp in iso-
8601 format

CardPAN string no The truncated PAN of the card

Approved boolean yes True if transaction is Approved, false otherwise

Voided boolean yes True if transaction is Voided, false otherwise

STAN integer yes
The System trace audit number of the transaction as
set by the authorisation system

25 / 31

parameter type required comment

BatchNumber integer yes The number of the batch this transaction belongs to

TID string yes
Terminal ID of the terminal that performed the
transaction

MID string yes
Merchant ID of the terminal that performed the
transaction

Amount integer yes
The actual transaction amount in integer form. Ex.
1.00 eur is 100. Does not include any tip or cashback

TipAmount integer yes
The transaction tip amount in integer form. Ex. 1.00
eur is 100

CashbackAmount integer yes
The transaction cashback amount in integer form.
Ex. 1.00 eur is 100

LoyaltyRedemptionAmount integer yes
The transaction loyalty redemption amount in
integer form. Ex. 1.00 eur is 100

Instalments integer no The number of instalments

RRN string yes
The retrieval reference number of the authorization
system

AuthCode string yes The authorization code of the authorization system

OriginalRRN string no
The RRN of the initial transaction - only applicable if
TxnType = REFUND

OriginalAuthCode string no
The authorization code of the initial transaction -
only applicable if TxnType = REFUND

CurrencyCode integer yes The ISO 4217 numerical currency code . 978 for EUR

CustomerReference string no
The customer defined reference used to reference
the transaction in 3rd party systems. Maximum
length of 50 characters

MerchantReceipt string no
The receipt reference if a merchant electronic
receipt is available. See chapter 3.7.13

CustomerReceipt string no
The receipt reference if a customer electronic
receipt is available. See chapter 3.7.13

The total (payable) amount of a transaction is calculated as follows:

Amount + TipAmount + CashbackAmount + LoyaltyRedemptionAmount

The amount charged to the card does not include the loyalty amount which is redeemed from a loyalty
system:

Amount + TipAmount + CashbackAmount

26 / 31

Filter parameters:

parameter comment

TxnType

Timestamp_min

Timestamp_max

Timestamp_max

Amount

Amount_min

Amount_max

TipAmount

TipAmount_min

TipAmount_max

CashbackAmount

CashbackAmountt_min

CashbackAmount_max

Acquirer

Terminal

TID

Merchant

MID

RRN

AuthCode

RRN

OriginalRRN

OriginalAuthCode

CustomerReference

Example response:

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [

27 / 31

 {
 "Id": "8083099",
 "TxnType": 0,
 "Timestamp": "2023-02-15T15:35:16Z",
 "VoidTimestamp": null,
 "CardPAN": "491791******7889",
 "Approved": true,
 "Voided": false,
 "STAN": 13,
 "BatchNumber": 143,
 "Acquirer": 11,
 "TID": "64999942",
 "MID": "1234814",
 "Amount": 200,
 "TipAmount": 0,
 "CashbackAmount": 0,
 "LoyaltyRedemptionAmount": 0,
 "Instalments": 0,
 "RRN": "304610013134",
 "AuthCode": "892148",
 "OriginalRRN": null,
 "OriginalAuthCode": null,
 "CurrencyCode": 978,
 "CustomerReference": null
 }
]
}

3.7.10. Transaction detail

The endpoint is used to retrieve details of the transaction referenced by given id. It is referenced by the
"Transaction" and "InitialTransaction" fields of a transaction intent and can be used to provide more details
about the transaction.

Request type: GET
Request URL: [base url]/transaction/{id}/

Response parameters:

parameter type required comment

Id string yes
The unique identifier of the transaction for the POS
backend

TxnType integer yes
The transaction type. See transaction type table for
possible values

Timestamp string yes
The transaction completion timestamp in iso-8601
format

28 / 31

parameter type required comment

VoidTimestamp string no
The transaction void completion timestamp in iso-
8601 format

CardPAN string no The truncated PAN of the card

Approved boolean yes True if transaction is Approved, false otherwise

Voided boolean yes True if transaction is Voided, false otherwise

STAN integer yes
The System trace audit number of the transaction as
set by the authorisation system

BatchNumber integer yes The number of the batch this transaction belongs to

TID string yes
Terminal ID of the terminal that performed the
transaction

MID string yes
Merchant ID of the terminal that performed the
transaction

Amount integer yes
The actual transaction amount in integer form. Ex.
1.00 eur is 100. Does not include any tip or cashback

TipAmount integer yes
The transaction tip amount in integer form. Ex. 1.00
eur is 100

CashbackAmount integer yes
The transaction cashback amount in integer form.
Ex. 1.00 eur is 100

LoyaltyRedemptionAmount integer yes
The transaction loyalty redemption amount in
integer form. Ex. 1.00 eur is 100

Instalments integer no The number of instalments

RRN string yes
The retrieval reference number of the authorization
system

AuthCode string yes The authorization code of the authorization system

OriginalRRN string no
The RRN of the initial transaction - only applicable if
TxnType = REFUND

OriginalAuthCode string no
The authorization code of the initial transaction -
only applicable if TxnType = REFUND

CurrencyCode integer yes The ISO 4217 numerical currency code . 978 for EUR

CustomerReference string no
The customer defined reference used to reference
the transaction in 3rd party systems. Maximum
length of 50 characters

MerchantReceipt string no
The receipt reference if a merchant electronic
receipt is available. See chapter 3.7.13

29 / 31

parameter type required comment

CustomerReceipt string no
The receipt reference if a customer electronic
receipt is available. See chapter 3.7.13

The total (payable) amount of a transaction is calculated as follows:

Amount + TipAmount + CashbackAmount + LoyaltyRedemptionAmount

The amount charged to the card does not include the loyalty amount which is redeemed from a loyalty
system:

Amount + TipAmount + CashbackAmount

Example response (with optional electronic receipt references):

{
 "Id": "8083099",
 "TxnType": 0,
 "Timestamp": "2023-02-15T15:35:16Z",
 "VoidTimestamp": null,
 "CardPAN": "491791******7889",
 "Approved": true,
 "Voided": false,
 "STAN": 13,
 "BatchNumber": 143,
 "Acquirer": 11,
 "TID": "64999942",
 "MID": "1234814",
 "Amount": 200,
 "TipAmount": 0,
 "CashbackAmount": 0,
 "LoyaltyRedemptionAmount": 0,
 "Instalments": 0,
 "RRN": "304610013134",
 "AuthCode": "892148",
 "OriginalRRN": null,
 "OriginalAuthCode": null,
 "CurrencyCode": 978,
 "CustomerReference": null,
 "CustomerReceipt": "urQulVBzTLipOH5uE2pVYQ",
 "MerchantReceipt": "KLjKFVjzSyOknDfqz524_g"
}

3.7.11. ECR - Terminal bind

This call is required only when EcrTokenData workflow is used (section 3.3).

Request type: POST
Request URL: [base url]/terminal/{id}/ecrbind/

30 / 31

Request parameters:

parameter type required comment

EcrId string yes The unique ECR id of the device to be bound

Response parameters:

parameter type required comment

EcrId string yes The unique ECR id as reflected from the request

If a terminal is already bound and the endpoint is called with the same EcrId, the call has no effect. If the
endpoint is called with a different EcrId, the previous EcrId is discarded and the device is bound with the new
one.

Example request:

{
 "EcrId" : "ABC00111222"
}

Example response:

{
 "EcrId": "ABC00111222"
}

3.7.12. ECR - Terminal session key exchange

This call is required only when EcrTokenData workflow is used (section 3.3)

The session key provided must always be encrypted under the pre-shared master key that the ECR and POS
has exchanged with ESEND.

Request type: POST
Request URL: [base url]/terminal/{id}/ecrkeyexchange/

Request parameters:

parameter type required comment

EcrId string yes The unique ECR id of the device that was bound with the POS

SessionKey string yes
The new sesssion key to be used for all future authentication. The
previous session key (if it exists) is deleted

Kcv string yes
The key check value generated with this key. Used to validate the
correctness of the session key

31 / 31

Response parameters:

parameter type required comment

EcrId string yes
The unique ECR id of the device that was bound with the POS-
reflected from the request

SessionKey string yes The session key that was loaded - reflected from the request

Kcv string yes
The key check value of the key that was loaded - reflected from the
request

The following example assumes that the pre-shared master key is "ABCDEF01234567899876543210ABCDEF"
and the cleartext session key that is transmitted is "7E0269C147A7C328F46E497841CD5823"

Example request:

{
 "EcrId" : "ABC00111222",
 "SessionKey" : "8FF79564430DD13EF06B5F199278FADC",
 "Kcv" : "4C8166"
}

Example response:

{
 "EcrId" : "ABC00111222",
 "SessionKey" : "8FF79564430DD13EF06B5F199278FADC",
 "Kcv" : "4C8166"
}

3.7.13. Get electronic receipt

WebECR optionally supports the issuance of electronic receipts. In the case that the POS and merchant
supports them, the client software receives a receipt reference (merchant receipt, customer receipt or both) in
the fields CustomerReceipt, MerchantReceipt (see chapter 3.7.10). The client software can then retrieve the
receipt itself using this endpoint.

By default, this endpoint responds with a PNG image which is a graphic representation of the receipt.

Request type: GET
Request URL: [base url]/r/{ReceiptReference}

Example request:

https://[base url]/r/urQulVBzTLipOH5uE2pVYQ

